BIOINSPIRED CAMERA SOLUTIONS

Prof. Dr. Andreas Tünnermann

Classic cameras and the human eye

model for technical imaging techniques

- Iens group
 - + aperture
 - + free space propagation
 - + detector

in reality high technical effort

- big F-numbers (bright)
- aberration correction
- dispersion correction
- optical zoom

Camera technologies

from analogue to digital image recording

instantaneous availability + extreme miniturisation

1. revolution in image recording

Miniaturized imaging systems – market

Miniaturized imaging systems – market

- 27.1 billion US\$ volume of sales 2018
- 5.1 billion units delivered in 2018
- 8.0 billion units will be estimated in 2024

cameras – quo vadis.

Year 2019:

the same old story...

Scaling of camera optics

size

costs

low angular

information

capacity

resolution

scaling limits

assumption: diffraction limited imaging

8

Design criteria for imaging systems in nature... optimized for survival (reproduction) of the species

nature brain capacity optical ressources resolution 3D capability simplicity clear focus: task-orientation robustness via tolerancing compactness

Design criteria for imaging systems in nature... and analog criteria in technology

technology nature computational brain capacity power / Al optical optical ressources ressources resolution resolution economy of 3D capability simplicity **3D** capability scale compactness compactness

Imaging systems optimized for living conditions

compactness

task-orientation: eyes for hunting and gathering

Imaging systems of the jumping spyder

spyder - too small for movable single channel eyes \rightarrow 4 different, but rigid eye pairs

function principle (top view)

jumping spyder Salticidae

task-oriented eye types

- front: small field of view and high resolution
- lateral: low resolution and large field of view

task-orientation: eyes for hunting and escaping predators

Design criteria for a jumping spyders imaging system

Imaging systems for consumer electronics (VGA) rating criteria for a holistic design...

Bio inspiration...

apposition eye - daylight insects

Fruit fly drosophila

interommatidial	
angle:	$\Delta \Phi = D/R$
acceptance angle:	$\Delta \phi = [(d/f)^2 + (\lambda/D)]$
sensitivity:	$\sim d^2/(F/#)^2$
scaling:	$\Delta \Phi^2 \sim 1/R$

large field of view

. ..

- small size
- small resolution

© Fraunhofer

The dawn of multi-aperture imaging (@ IOF)

- multi-aperture camera
- "apposition eye camera"
- 110° FOV, distortion free

 small field of view per aperture (0.8°) low resolution (40 kPixel)

IOF 2006

Production of the electronic apposition eye

wafer with 5x5 multi-aperture optics

standard lens faceted eye lens

ultrathin camera

multi-aperture optics connected with CMOS sensor in ceramic housing

Imaging systems for consumer electronics (MP) rating criteria for a holistic design...

Bio inspiration

superposition eye – Xenos parasite

Xenos peckii

scheme of Xenos peckii's eye

- many different eyes with different viewing directions
- fractions of the object on each part of the retina (ommatidium)
- image rotation and stitching in the "brain"

Production of the electronic cluster eye

Electronic cluster eye – image reconstruction

Test images

captured image of test target

image captured outside the institute

image to determine distortion

video captured with prototype

Electronic cluster eye map of depth

Electronic cluster eye

software-refocusing

See the world with different eyes...

facetvision.de

Optics is per definition bidirectional...

The inverted cluster eye – the array projector

- optics setup analogous to focused fly's eye condenser buried slide array (object array)
- projection distance determined by pitch difference between slide and projection lens array

Ultrathin projectors

- LCD array projector
- LCoS array projector
- OLED array projector

insect-inspired projection

Imaging systems for consumer electronics (20 MP+++) rating criteria for a holistic design...

> 20MP camera – the hybrid / the best from two worlds...

