Photon Management Enables High Efficiency Photovoltaics

Henning Helmers

Fraunhofer Institute for Solar Energy Systems ISE

4th Fraunhofer Symposium on "Digital Photonics made in Germany" Tokyo, 09.10.2019

www.ise.fraunhofer.de

Nations UniesDecember 12, 2015
Paris, FranceConférence sur les Changements Climatiques 2015

COP21/CMP11

Paris France

FSIDEN

1.5e18 kWh/year >10'000 times the world energy consumption

Silicon-based Photovoltaics

Solarsiedlung, Stadtteil Vauban, Freiburg, Germany

Picture: Rolf Disch SolarArchitektu

Silicon-based Photovoltaics: Top 25 Operational Solar PV Plants in Japan

Pictures: https://asia.solar-asset.management/top-25-largest-projects

Terawatt-scale Photovoltaics: Trajectories and Challenges [1]

- Solar capacity is growing exponentially for decades
- 2018, solar PV capacity additions passed 100 GW mark
- Exponential growth rate of solar substantially greater than growth in electricity demand
- Request to technology
 - Further cost reduction
 - Efficiency increase (=reduced balance of system cost)

© Fraunhofer ISE FHG-SK: ISE-INTERN/ [1] NM Haegel, R Margolis, T Buonassisi, D Feldman, A Froitzheim, R Garabedian, M Green, S Glunz, HM Henning, B Holder, I Kaizuka, B Kroposki, K Matsubara, S Niki, K Sakurai, RA Schindler, W Tumas, ER Weber, G Wilson, M Woodhouse, S Kurtz, Science 356(6334), 2017. DOI: 10.1126/science.aal1288 [2] REN21. Renewables 2019 Global Status Report, 2019. ISBN 978-3-9818911-7-1

Silicon Based Solar Cells: State of the Art

Si single-junction solar cell

Kaneka IBC record cell [#] η =26.7%

[#] Yoshikawa, et al., Nature Energy 2, 2017.

[§] Polman, et al., Science 352, 2016 (latest values: www.lmpv.nl/SQ).

High-efficiency Photovoltaics How to Make Better Use of the Broad Band Solar Spectrum?

[#] Yoshikawa, et al., Nature Energy 2, 2017.
[§] Polman, et al., Science 352, 2016 (latest values: www.lmpv.nl/SQ).
[11 Shockley and Queisser, J Appl Phys 32(3), 1961.

High-efficiency Photovoltaics How to Make Better Use of the Broad Band Solar Spectrum?

Manipulate the spectrum [1,2,3,4]

Adapt the receiver material

Fondriest Environmental "Solar Radiation and Photosynethically Active Radiation." Fund Environ Meas. 2014.

[1] Götzberger, Greubel, Appl Phys 14, 1977: Luminescent concentrator
[2] Young, Appl Opt 5(6), 1966: Solar-pumped fiber laser
[3] Harder and Würfel, Semicond Sci Tech 18, 2003: Thermophotovoltaics
[4] Trunke, Green, Würfel I. Appl Phys 92, 2002: Una and down-conversion of photons

- Manipulate the spectrum [1,2,3,4]
 - Solar-pumped fiber laser [2]

Adapt the receiver material

11 © Fraunhofer ISE FHG-SK: ISE-INTERNAL [1] Götzberger, Greubel, Appl Phys 14, 1977: Luminescent concentrator
[2] Young, Appl Opt 5(6), 1966: Solar-pumped fiber laser
[3] Harder and Würfel, Semicond Sci Tech 18, 2003: Thermophotovoltaics
[4] Tunike, Green, Würfel, Lappl Phys 92, 2002: Un- and down-conversion of photons

- Manipulate the spectrum [1,2,3,4]
 - Solar-pumped fiber laser [2]

Adapt the receiver material

[1] Götzberger, Greubel, Appl Phys 14, 1977: Luminescent concentrator
[2] Young, Appl Opt 5(6), 1966: Solar-pumped fiber laser
[3] Harder and Würfel, Semicond Sci Tech 18, 2003: Thermophotovoltaics
[4] Trunke, Green, Würfel I. Appl Phys 92, 2002: Una and down-conversion of photons

Photovoltaic Laser Power Converters **Theoretical Limit**

Detailed balance calculation in the Shockley-Queisser limit for a single-junction PV cell

Photovoltaic Laser Power Converters Theoretical Limit

Detailed balance calculation in the Shockley-Queisser limit for a single-junction PV cell

Photovoltaic Laser Power Converters

Photon Management by Bandgap Engineering: III-V Compound Semiconductors

Photovoltaic Laser Power Converters Photon Management by Bandgap Engineering: III-V Compound Semiconductors

Photovoltaic Laser Power Converters Light Trapping and Photon Recycling

 Cell on substrate: Emitted photons from the absorber are lost into the substrate

Photovoltaic Laser Power Converters Light Trapping and Photon Recycling

- Cell on substrate: Emitted photons from the absorber are lost into the substrate
- Back mirror: Light is trapped inside the absorber → increased carrier concentration → boost voltage ("photon recycling") [#]

18

Photovoltaic Laser Power Converters Light Trapping and Photon Recycling

- Cell on substrate: Emitted photons from the absorber are lost into the substrate
- Back mirror: Light is trapped inside the absorber → increased carrier concentration → boost voltage ("photon recycling")

19

Power (and Data) by Light Optical Power Transmission – An Enabling Technology

Galvanic

isolation

Electro-magnetic interference

Weight reduction

Lightning

protection

Explosion protection reduction

Wireless power

20 © Fraunhofer ISE FHG-SK: ISE-INTERNAL Helmers, Lackner, Siefer, Oliva, et al., Proc 32nd EU PVSEC, Munich, 2016. Helmers, Höhn, Lackner, López, et al., Proc OWPT, Yokohama, 2019.

Manipulate the spectrum

- Adapt the receiver material
 - Multi-junction solar cells [1,2]

Fondriest Environmental "Solar Radiation and Photosynethically Active Radiation." Fund Environ Meas. 2014.

High-efficiency Photovoltaics How to Make Better Use of the Broad Band Solar Spectrum?

High-efficiency Photovoltaics How to Make Better Use of the Broad Band Solar Spectrum?

[#] Shockley and Queisser, J Appl Phys 32(3), 1961.
[§] Létay and Bett, Proc 17th EU PVSEC, Munich, Germany, 2001.

High-efficiency Photovoltaics Si-Tandem Technology Expected

1% of 200 GWp

> 6×10⁶ m²/year

ाTRPV 10th edition 2019 - कु report release and key findings कि

International Technolog

Roadman for Photovoltain

Markus Fischer

梁 ITRP

PV CellTech Conference, March 13 2019

Penang, Malaysia

https://itrpv.vdma.org/

High-efficiency Photovoltaics Present and Future Markets

Cube sats / high altitude pseudo satellites

olar-powered Toyota Prius Solar electric vehicles

sonomotors.com

Fraunhofer

III-V/Si Tandem Solar Cells Fabrication Approach: Wafer Bonding Route

III-V/Si Tandem Solar Cells Fabrication Approach: Wafer Bonding Route

III-V/Si Tandem Solar Cells with Rear-side Photonic Grating

III-V/Si Tandem Solar Cells with Rear-side Photonic Grating

Cariou, Benick, Feldmann, Höhn, et al, Nature Energy 3, 2018. Fraunhofer ISE, press release #22, 28.09.2019.

Bio-inspired Photonic Structures for Integrated Photovoltaics Morpho-Color[®]

Idea:

 Morpho butterfly: bright, angle independent color originated from a 3D photonic structure

Realization:

 Morpho effect reproduced by Bragg stack on a structured substrate

som	runny
	Module glass
	Bragg stack
	Laminate
	Solar cell

Bio-inspired Photonic Structures for Integrated Photovoltaics: Morpho-Color® PV Modules for Building Integration

- Narrow band reflection:
 - Bright color appearance
 - Only 7% relative efficiency reduction
- Various colors possible
- Only module glass is modified
- Standard solar cells and lamination processes can be used

Demonstrator modules: 1.09 x 1.12 m²

Bio-inspired Photonic Structures for Integrated Photovoltaics: Morpho-Color® PV Modules for Vehicle Integration

Photon Management Enables High Efficiency Photovoltaics Summary

- Power-by-Light
 - Bandgap engineering for PV laser power converters
 - Efficiency of η_{860nm} =67.3% enabled by photon recycling
- Tandem solar cells
 - Photonic rear-side gratings enable light trapping
 - III-V/Si tandem solar cell with 34.1% efficiency demonstrated
- Photonic structures enable invisible photovoltaics e.g. for building and vehicle integration

Acknowledgements

Sincere thanks to

- all sponsors for financial support
- all partners
- all co-workers at Fraunhofer ISE

Thank you for your Attention!

Fraunhofer Institute for Solar Energy Systems ISE

Dr. Henning Helmers, Deputy Head of Department "III-V Photovoltaics and Concentrator Technology"

www.ise.fraunhofer.de | www.III-V.de | s.fhg.de/profile-h-helmers henning.helmers@ise.fraunhofer.de