

4th Fraunhofer Symposium on »Digital Photonics made in Germany«

Date: October 9th 2019 Location: Imperial Hotel Tokyo 1-1-1 Uchisaiwai-cho, Chiyoda-ku, Tokyo 100-8558, Japan

EUV/DUV SOURCE DEVELOPMENT AND ITS COLLABORATION WITH GERMANY

Dr. Hakaru Mizoguchi Executive Vice President, CTO, Gigaphoton Inc.

Hiroaki Nakarai, Tamotsu Abe, Hiroshi Tanaka, Yukio Watanabe, Tsukasa Hori, Takeshi Kodama, Yutaka Shiraishi, Tatsuya Yanagida, Georg Soumagne, Tsuyoshi Yamada, Takashi Saitou

Gigaphoton Inc. Hiratsuka facility: 3-25-1 Shinomiya Hiratsuka Kanagawa, 254-8567, JAPAN

Agenda

Introduction

Gigaphoton Business update

EUV Research & Development History

Experiment A: >330W Power Challenge of EUV Source

- 1 CO2 Laser Power Upgrade
- ② Beam Uniformity Upgrade at Plasma Point
- ③ Optimization of Plasma Parameters

Experiment B:

Long-term Test and Challenge for Long-life Mirror and Availability

(4) Lifetime Extension of Collector Mirror

Summary & Acknowledgement

Agenda

Introduction

Gigaphoton Business update

EUV Research & Development History

Experiment A: >330W Power Challenge of EUV Source

- 1 CO2 Laser Power Upgrade
- (2) Beam Uniformity Upgrade at Plasma Point
- ③ Optimization of Plasma Parameters

Experiment B:

A Lifetime Extension of Collector Mirror

Summary & Acknowledgement

2Q2019 Business Highlights - DUV

DUV Business

- GPI recorded to ship 116 unit shipment as 51% M/S in FY2018 (Apr., 2018 – Mar., 2019)
- Stronger KrF demand driven by 3D NAND device transitioning
- Released G45K as higher power model to the market in 1Q2019

Products Lineup for Tomorrow

G45K 248nm wavelength 4 kHz max repetition 40-50W output **20% module life* improvement**

DUV Lithography

CY2018 Light Source Projected Install Share Analysis

DUV Layers would be decreased after EUV HVM

- CY2018 is the peak of DUV adoption in HVM.
- CY2020-21 will be the Drastic Rump up of EUV at real HVM line.

Agenda

Introduction Gigaphoton Business update

EUV Research & Development History

Experiment A: >330W Power Challenge of EUV Source

① CO2 Laser Power Upgrade

② Beam Uniformity Upgrade at Plasma Point

③ Optimization of Plasma Parameters

Experiment B:

Summary & Acknowledgement

Slide 9 Study Apparatus EUV & Photo **EUV Research & Development History** Material by EIDEC 2014 2015 2016 2009 2010 2011 2012 2013 2017 2018 2019 year 2002-2008 NEDO (Matching Fund **FUVA** ENEC AEIDEL **GIGAPHOTON (LPP) KOMATSU (LPP)** Noip USHIO (DPP) KOMATSU (TIC, MTC) nishea ETS-1 ETS-2 Proto#2 Pilot#1 Proto#1 **Magnetic Mitigation** Proto#1 Pilot#1 Proto#2 ETS MOPA YAG laser system Xe +YAG Laser Pico second Mitsubishi CO2 Sn +CO2 Laser prepulase laser system

Start with Liquid Xe Jet target experiment with YAG laser driver

Liquid Xenon Jet System

We found out Tin + CO2 laser could be around 8% efficiency through Leading project & EUVA.

EUV conversion efficiency simulation by Osaka Univ. team (20

State of Art Gigaphoton LPP Source Configuration* was Established in 2007 *several patented

- High ionization rate and CE EUV tin (Sn) plasma generated by dual-wavelength shooting via CO₂ and pre-pulse solidstate lasers
- 2. Hybrid CO₂ laser system with short pulse high repetition rate oscillator and commercial cwamplifiers
- 3. Tin debris mitigation with a super conductive magnetic field
- 4. Accurate shooting control with droplet and laser beam control
- 5. Highly efficient out-of-band light reduction with grating structured C1 mirror

ETS-2 demonstrated at 10W avg. power and 50W power with Magnetic Mitigation.

Gigaphoton found >50% advantage of conversion efficiency by pico-second pre-pulse.

Very short pulse

duration with 1um

Pre-Pulse Technology: Begin of Progress in 2012

- The mist shape of a picosecond prepulse is different from that of a nanosecond
- Nano-cluster distribution could be a key factor for high CE

Pre-Pulse Technology

Modeling nanosecond pre-pulses

~ 10 ps pre-pulse "Disk like target"

H. Mizoguchi, Dublin (2013)

RALEF simulations Evolution of Sn density profile for 10 ns pre-pulse

"Advances in computer simulation tools for plasma-based sources of EUV radiation"

V.V. Medvedev^{1,2}, V.G. Novikov^{1,3}, V.V. Ivanov^{1,2}, et.al.

¹ RnD-ISAN/EUV Labs, Moscow, Troitsk, Russia

² Institute for Spectroscopy RAS, Moscow, Troitsk, Russia

³ KeldyshInstitute of Applied Mathematics RAS, Moscow, Russia

Pre-Pulse Technology

Modeling picosecond pre-pulses

~ 10 ps pre-pulse "Dome like target"

H. Mizoguchi, Dublin (2013)

RALEF simulations Evolution of Sn density profile for 10 ps pre-pulse

"Advances in computer simulation tools for plasma-based sources of EUV radiation" V.V. Medvedev^{1,2}, V.G. Novikov^{1,3}, V.V. Ivanov^{1,2}, et.al. ¹ RnD-ISAN/EUV Labs, Moscow, Troitsk, Russia ² Institute for Spectroscopy RAS, Moscow, Troitsk, Russia ³ KeldyshInstitute of Applied Mathematics RAS, Moscow, Russia

Pre-Pulse Technology (4)

Experiment shows pico-second pre-pulse dramatically enhances ionization rate and CE

Data in 10Hz Experimental Device

Copyright © 2013 GIGAPHOTON, Inc. All rights reserved. (Rev A) The information contained here is subject to change without notice.

Pre-Pulse Technology (5)

Expanding distribution of Tin mist(10ns vs.10ps)

Remarkable reduction of mist is demonstrated by the pico-second pre-pulse.

Copyright © 2013 GIGAPHOTON, Inc. All rights reserved. (Rev A) The information contained here is subject to change without notice.

Copyright 2019 GAPHOTON INC. all rights reserved.

laser

High Power EUV Source System: EUV Chamber (2013)

Status of proto light sources, #1 and #2

- System #1 : For EUV irradiation experiment (Operational)
 - The whole system (lasers and chambers) is working now
 - There are some issues and improvement activity is in progress
- System #2 :For high power development (Under construction)
 - The design and procurement was finished
 - The assembly will be finish soon
 - After the initial adjustment, the first EUV emission will be in this Q4

Copyright 2019 GAPHOTON INC. all rights reserved.

Copyright © 2013 GIGAPHOTON, Inc. All rights reserved. (Rev A) The information contained here is subject to change without notice.

High Power CO₂ Laser & Pre-Pulse Laser

Driver Laser System

Pre-pulse Laser

<u>ed</u>gewave

Summary of ultra-short Pulse Laser Specifications

- highest beam quality: M² = 1.1
- average power: up to 600W
- high pulse energy: up to 2000µJ
- short pulse length: down to 500fs
- high peak power: up to 200MW
- high pulse rep. rate: up to 100 MHz
- scalability of energy and power
- · wavelength: 1064, 532, 355, 266
- efficient nonlinear frequency conversion
- unique flexibility in beam profile:
- circular Gaussian
- line shaped 1D Top-hat
- square or rectangular 2D Top-hat

IAPLE 2018, Cape Town

High Power CO₂ Laser Development

	Laser Power @Plasma	System	Oscillator	Pre- Amplifier	Main Amplifier
1G Proto #1	5kW	Endurance Testing Platform	GPI	R	
2G Proto #2	10kW	Power Up Testing	GPI	R	
3G Proto #2	20kW (4λ)	Power Up Testing	GPI	M	
4G Pilot #1	>27kW (4λ)	Customer Beta Unit	GPI	M	M M M

Copyright © 2013 GIGAPHOTON, Inc. All rights reserved. (Rev A) The information contained here is subject to change without notice.

High Power CO₂ Laser Technology 1G,2G (2012)

Amplifier System A: experiment on present system using Trumpf amplifier laser

Performance data with 3x MA

- 10kW performance was confirmed during hour level operation
 - Pulsed CO2 laser system experiment with Gigaphoton oscillator laser and Trumpf amplifiers x3units laser system.
- Next challenge
 - Confirm operation at target shooting
 - Further power improvement

Compact high power pulsed CO2 laser (2010)

Copyright © 2013 GIGAPHOTON, Inc. All rights reserved. (Rev A) The information contained here is subject to change without notice.

Compact Slab type CO2 laser

Using slab laser as amplifier is GPI's new concept. Merit is foot print. Demerit is the difficulty to prevent self-oscillation. Currently, we can not decide yet if slab laser is useful or not.

GIGAPHOTON

High Power CO₂ Laser Technology 3G (2015)

Mitsubishi pre-amplifier was installed in Proto #2 and performance was confirmed

High Power CO₂ Laser Technology 4G (2017)

- > Mitsubishi CO2 amplifiers were set in driver laser frame.
- > Oscillator construction is going on.

Left side of driver laser

Sub Fab Area

Right side of driver laser

Agenda

Introduction
Gigaphoton Business update

EUV Research & Development History

Experiment A: >330W Power Challenge of EUV Source

- 1 CO2 Laser Power Upgrade
- 2 Beam Uniformity Upgrade at Plasma Point
- ③ Optimization of Plasma Parameters

Experiment B:

Long-term Test and Challenge for Long-life Mirror and Availability ④ Lifetime Extension of Collector Mirror

Summary & Acknowledgement

Layout of >330W EUV Light Source Pilot #1

First HVM EUV Source

- Original design was 250W EUV source
- >330W Power Challenge with Upgraded Hardware

Оре	rational specif (Target)	HVM Source	
	EUV Power		> 330W
Perform	CE		> 5.5-6.0%
ance	Pulse rate		100kHz
	Availability		> 90 %
	Droplet generator	Droplet size	< 20 micron
Techno	CO2 laser	Power	> 27 kW
logy	Pre-pulse laser	Pulse duration	~10 ps pulse duration
	Debris mitigation	Magnet, Etching	>3 months

>330W Power Challenge with Upgraded Hardware

Pilot System EUV Chamber

Droplet Generator : Lifetime

Lifetime is about 15 days limited by Tin volume. Target is 60 days.

		Current	Target
Droplet speed	m/s	90	90
Back pressure	MPa	40	40
Repetition rate limit of system	kHz	100	100
Lifetime	day	15	60
Length	mm	450	650
Diameter	mm	140	200

Investigation for large size material was completed. Development is on going. Projected completion by 2020. .

Pilot System Droplet Generator Technology Transfer

High speed droplet generator technology was successfully transferred from Prototype to the Pilot system

Droplet Status

Pilot System Droplet Generator

LPP EUV Source Shooting Control System

Pilot#1 System in Operation

Pilot #1 construction status (3) : EUV Chamber System

Copyright 2019 GAPHOTON INC. all rights reserved.

>330W Power Challenge with Upgraded Hardware

Target	Q4 2018	On Going	Q4 2019
Average Power	125W	250W-330W	≧330W
Repetition rate	100kHz	100kHz	100kHz
CO2 power (energy) at plasma operation with dose ctrl./maximum	10kW/16kW (100mJ/160mJ)	18kW/25kW (180mJ/250mJ)	18kW/25kW (180mJ/250mJ)
CE	4.0%	4.5~5.0%	5.5~6%
Technology for high power			
① CO2 Laser power Upgrade		~	\checkmark
② Beam Uniformity Upgrade at Plasma Point		~	\checkmark
③ Optimization of Plasma Parameters			\checkmark
④ Lifetime Extension of Collector Mirror < 0.05%/Bpls			\checkmark

$\textcircled{1} CO_2 LASER POWER UPGRADE$

Improvement of Higher-power CO₂ laser

- High-efficient laser amplifier with transvers flow concept (Mitsubishi electric).
- Recent improvement achieved **27 kW** laser power operation.

Output laser power

Extendibility to 1kW EUV Power (1)

Feasibility study of EUV Output Power vs. CO2 Input Power

Feasibility study of extendibility to 1kW

- Conversion efficiency is Key. At least achievement of CE>4% is essentially important. If not, CO2 laser will become >100kW.
- At least >50kW CO2 laser power must be realized. Even in best case of CE=8%.
- I believe; 1000W EUV source is feasible in future, from the technical data (experiment of CE and CO2 laser) and technical expectation at present.

Extendibility to 1kW EUV Power (2)

Possible scale up scenario of EUV Output Power vs. CO₂ Input Power

EUV ave.Power[W]			er[W]	Conversion Efficiency [%]											
@100kHz			2%	3%	4%	5%	<mark>6%</mark>	7%	8%						
nergy [mJ]	15		1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0					
	50		5	19.1	28.7	38.2	47.8	57.3	66.9	76.4					
	100		10	46.4	69.6	92.8	116.0	139.2	162.4	185.6					
	150		15	73.7	110.6	147.4	184.3	221.1	258.0	294.8					
	200		20	101.0	15,5	202.0	252.5	303.0	353.5	404.0					
	250	5	25	128.3	192.5	256.6	320.8	384.9	449.1	513.2	Our	scale-un s	cenario		
	300	ΓK	30	155.6	233.4	311.2	389.0	466.8	544.6	622.4	Our				
	350	e	35	182.9	274.4	365.8	457.3	548.7	640.2	731.6					
	400		40	210.2	315.3	420.4	525.5	630.6	735.7	840.8					
	450 ⁰	<u>۲</u>	45	237.5	356.3	475.0	593 <mark>8</mark>	712.5	831.3	950.0					
Ш	500	ave	50	264.8	397.2	529.6	662.0	794.4	926.8	1059.2			HVM (2 ^{na})		
ase	550		55	292.1	438.2	584.2	730.3	876.3	1022.4	<u>1168.4</u>	FUV nower	250W	500W	1000W	
2 18	600	ase	60	319.4	479.1	638.8	798.5	958.2	1117.9	1277.6		20011	00011	100011	
Ö	650	2	<mark>65</mark>	346.7	520.1	1 693.4 866.8 1040.1 1	1213.5	<mark>1386.8</mark>	CE	4%	5%	6%			
	700 2	3	70	374.0	561.0	748.0	935.0	1122.0	1309.0	<u>1496.0</u>					
	750		75	401.3	602.0	802.6	1003.3	1203.9	1404.6	1605.2	Pulse rate	100 kHz	100kHz	100kHz	
	800		80	428.6	642.9	857.2	1071.5	1285.8	1500.1	1714.4	Dro-pulso logor	Diagona	Diagona	Discos	
	850	_	85	455.9	683.9	911.8	1139.8	1367.7	1595.7	1823.6	Fre puise laser	FICO S	FICO S	FICOS	
	900		90	483.2	/24.8	966.4	1208.0	1449.6	1691.2	1932.8	CO2 laser power	25kW	40kW	65kW	
	950		95	510.5	/00.8	1021.0	12/0.3		1000.0	2042.0					
	1000		100	537.8	806.7	10/5.6	1344.5	1613.4	1882.3	2151.2	# of main amps	3	5	8	

Copyright © 2013 GIGAPHOTON, Inc. All rights reserved. (Rev A) The information contained here is subject to change without notice.

② BEAM UNIFORMITY UPGRADEAT PLASMA POINT

Test apparatus for pre-pulse study

- EUV generation at 10Hz
- Studies on CE improvement and debris mitigation
- Measurement tools for EUV radiation and tin particles and plasma characterization

Overview of test apparatus

Measurement tools

- EUV radiation
 - spectrometer
 - imaging camera
- Sn ions
 - -Faraday cup
 - -Electro static analyzer
- Sn atoms
 - -Laser induced fluorescence
- Sn fragments
 - Mie scattering
- Plasma
 - -Thomson scattering

Copyright 2019 GAPHOTON INC. all rights reserved.

JIGAPHOTON

Pre-Pulse Technology: Improvement in 2015

In an experiment device, we observed **5.5% CE** under optimized conditions. This was a **17% increase** from our old champion data (CE = 4.7%).

Experiment Device

Key Technology for higher CE

- 5.8% CE at 180mJ was already confirmed in small test bench by increased plasma size.
- CO2 beam non-uniformity of Pilot#1 due to beam expander design is improved.

③ OPTIMIZATION OF PLASMA PARAMETERS

Pre-Pulse Technology (3)

Neutral atoms measurement: ionization ratio is investigated

Copyright © 2013 GIGAPHOTON, Inc. All rights reserved. (Rev A) The information contained here is subject to change without notice.

Pre-Pulse Technology(4)

Experiment shows pico-second pre-pulse dramatically enhances ionization rate and CE

Data in 10Hz Experimental Device

Copyright © 2013 GIGAPHOTON, Inc. All rights reserved. (Rev A) The information contained here is subject to change without notice.

Plasma Parameter Measurement (1/2)

Plasma Parameter Measurement (2/2)

Tomson Scattering measurement characterize pre-pulse plasma in detail ! Next step: CE enhancement by plasma optimization.

IGAPHOTON

For Next Progress: Ce Simulation and Diagnostics of EUV Plasma

Slide 53

Pre-Pulse Technology (5)

EUV plasma parameters measurement by "Thomson Scattering" is ongoing in Kyushu University

Nd:YAG Laser

ω (1064 nm)

2m (532 nm)

Target

(Carbon)

f=250 mm

Nd:YAG Laser ω (1064 nm)

A Collective Laser Thomson Scattering System for Diagnostics of Laser-Produced Plasmas for Extreme Ultraviolet Light Sources

Kentaro Tomita1, Kazuki Nakayama¹, Kazuya Inoue1, Atsushi Sunahara², and Kiichiro Uchino¹

¹Interdisciplinary Graduate School of Engineering and Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan

²Institute for Laser Technology, Suita, Osaka 565-0871, Japan To develop a diagnostic system for laser-produced plasmas for extreme ultraviolet (EUV) light sources, collective laser Thomson scattering (LTS) was applied to laser-produced carbon plasmas to measure plasma parameters such as electron density (ne) and electron temperature (Te).

Plasmas having parameters necessary for an EUV light source (ne = 10^{24} - 10^{25} m⁻³, Te = 30-50 eV) were achieved, and these parameters were successfully evaluated by a pilot diagnostic system with errors below 10%. From these results, an LTS system for diagnostics of tin plasmas for real EUV light sources was designed.

Appl. Phys. Express 6 (2013) 076101

0/201

laser achtomat

/=150 mm

Target (Carbon

600 um (FWH)

(=300 mm

Fig. 1. Schematic diagram of the collective Thomson scattering system

for laser-produced plasmas. The inset shows a detailed version of the

500 ...

200 laser

light. laser

Triple Grating

Spectrometer

(TGS)

ICCD Camera

Fig. 2. (a) Two-dimensional Thomson scattering image. (b) LTS spectrum extracted from the center part of (a) and the curve fit based on the theoretical model.

Fig. 3. (a) Two-dimensional Thomson scattering image when the additional laser was injected, (b) LTS spectrum extracted from the center part of (a) and the curve fit based on the theoretical model.

Copyright 2019 GAPHOTON INC. all rights reserved.

© 2013 The Japan Society of Applied Physics

K. Tomita et al

LATEST SYSTEM OPERATION DATA OF PILOT#1

Preliminary data (1/2):

>330W Power Challenge with Upgraded Hardware

>330W with 5% CE at 100kHz operation is demonstrated at Pilot#1 (short term)

Higher Droplet speed(>100m/s) realize 1mm spacing and demonstrate stable EUV generation

Preliminary data (2/2):

>330W Power Challenge with Upgraded Hardware

Open loop EUV energy (moving ave.) 100kHz 100% duty cycle

Open loop EUV energy distribution 100kHz 100% duty cycle

Agenda

Introduction

Gigaphoton Business update

EUV Research & Development History

Experiment A: >330W Power Challenge of EUV Source

1 CO2 Laser Power Upgrade

2 Beam Uniformity Upgrade at Plasma Point

③ Optimization of Plasma Parameters

Experiment B:

Long-term Test and Challenge for Long-life Mirror and Availability

(4) Lifetime Extension of Collector Mirror

Summary & Acknowledgement

System Performance: 125W Operation Data (1/2)

125W had been achieved with only 10 kW of CO_2 power for 53Bpls operation.

	Performance
Average power at IF	125W
Dose error average (3 sigma)	0.04%
Die yield (<0.16%)	98.5%
Pulse Number	53Bpls
Duty cycle	100%
In-band power	125W
Dose margin	40%
Collector lifetime	0.9%/Bpls
Repetition rate	100kHz

System Performance: 125W Operation Data (2/2)

CO2 Laser Pointing at Combiner

PPL Laser Pointing at Combiner

Droplet Position at Plasma

Availability: Status and Targets

* Potential availability is calculated, based on module lifetime and maintenance time.

Slide 61

Copyright 2019 GAPHOTON INC. all rights reserved.

(4) LIFETIME EXTENSION OF COLLECTOR MIRROR

Corrector Mirror Technology (1)

Role of Corrector Mirror

- Transmit the EUV light from plasma point to intermediate focus
 - Filtering the IR light originate from driver CO_2 laser (Patented)
 - Periodical maintenance is required (Refurbishments)

4

Collector Mirror and IR Reduction Technology

Cllrector Mirror Progress

Corrector Mirror Technology (2)

- Collector reflectivity is one of the key item for power improvement

	Current	250W target
Collector type	V5	V5+
H2 Pressure	<20Pa	<20Pa
Collector Efficiency	>74%	>7 4%
Collector Reflectivity	>45%	>50%
Gas Transmittance	>95%	>95%
Plasma to clean	31.6%	35.1%

Etching and Dissociation Sn balance on the Mirror Surface

Chemical Aquarium on the Mirror Surface

Protection & cleaning of collector with H₂ gas

- High energy tin neutrals are decelerated by H₂ gas in order to prevent the sputtering of the coating of collector.
- Deposited tin on the collector is etched by H radical gas*.
- Gas flow and cooling systems for preventing decomposition of etched tin (SnH₄)

*H₂ molecules are dissociated to H radical by EUV-UV radiation from plasma. $SnH_4 \rightarrow Sn+4H$

- Tin ionization & magnetic guiding
 - Tin is ionized effectively by double pulse irradiation
 - Tin ions are confined with magnetic field
 - Confined tin ions are guided and discharged from exhaust ports

Magnetic Mitigation Technology

Generated ion is corrected at lon catcher

Change of Capping Layer and Multi-Layer under Tin Plasma Sputtering

Thickness changes at capping layer due to sputtering.

First Si layer become thicker and reflectance down around 30% due to oxidization.

Suppression of Fast Tin Ion

- Ion energy and charge-state measurement with electro-static analyzer(ESA)
- Improvement of Ion energy distribution is essentially effective.

Ion energy distribution

EUV Plasma Cooling

Sputtering rate enhancement occurred by gas heating at higher output power.

EUV plasma cooling is key of mirror lifetime extension at higher power operation.

New Capping Layer Search at New SUBARU Japan

- Screening of oxidation of reflection layer with synchrotron radiation (λ=13.5nm) source (Name of SOR in Hyogo Univ.= "New SUBARU")
- Improvement of collector lifetime is on going

Collector Mirror: Lifetime Status

- Capping layer and Tin contained Gas flow Improvement are effective.
- Collector reflectivity degradation is certainly improving.

Latest Data (June 2019)

Agenda

Introduction

Gigaphoton Business update

EUV Research & Development History

Experiment A: >330W Power Challenge of EUV Source

- 1 CO2 Laser Power Upgrade
- 2 Beam Uniformity Upgrade at Plasma Point
- ③ Optimization of Plasma Parameters

Experiment B:

Long-term Test and Challenge for Long-life Mirror and Availability ④ Lifetime Extension of Collector Mirror

Summary & Acknowledgement

Summary

EXPERIMENT-A: >330W Power Challenge of EUV Source

- Gigaphoton redefined power target to \geq 330W ave. with -0.05%/Gpls, >90% availability
- High conversion efficiency 5.0% is realized with improved driver laser technology.
- High speed (>100m/s) & small (20micron) droplet successfully stabilize EUV emission...
- CE enhancement >6% by plasma parameter optimization is clarified through small experimental device by Tomson scattering measurement.
- CO2 laser power upgrade >27kW and Beam uniformity upgrade is successfully done.
- >330W operation is successfully demonstrated at Pilot#1 system (short term).

EXPERIMENT-B: Long-term Test and Challenge for Long-life Mirror and Availability

- 125W had been achieved with only 10 kW of CO2 power for around 50Bpls operation.
- Pilot#1 system achieved potential of >85% Availability (2weeks average).
- -0.15%/Gpls with 125W ave. was demonstrated during 30Mpls with mirror test.

Demonstration of Full Spec. >330W operation will be by Q4 2019

Slide

Thank you for co-operation:

- Trumpf, Edgewave, OptiX fab., Rofin Laser, Franhofer IOF in Germany for excellent commercially available laser and optics technology.
- Mitsubishi electric CO₂ laser amp. develop. team: Dr. Junichi Nishimae, Dr. Shuichi Fujikawa, Dr. Yoichi Tanino* and others
- Dr. Kentaro Tomita, Prof. Kiichiro Uchino and others in Kyushu University
- Dr. Akira Endo : HiLase Project (Prague) and Prof. Masakazu Washio and others in Waseda University
- Prof. Takeshi Higashiguchi in Utsunomiya Univ.
- Prof. Takeo Watanabe in New Subaru Institute
- Dr. Jun Sunahara, Predu Univ. and Dr. Katsunori Nishihara, Prof. Hiroaki Nishimura in Osaka University

Thank you for funding:

EUV source development funding is partially support by (New Energy and Industrial Technology Development Organization) in JAPAN

Thank you to my colleagues:

EUV development team of Gigaphoton: Hiroaki Nakarai, Tamotsu Abe, Takeshi Ohta, Krzysztof M Nowak, Yasufumi Kawasuji, Hiroshi Tanaka, Yukio Watanabe, Tsukasa Hori, Takeshi Kodama, Yutaka Shiraishi, Tatsuya Yanagida, Tsuyoshi Yamada, Taku Yamazaki, Takashi Saitou and other compression Copyright 2019 GAPHOTON INC. all rights reserved.

THANK YOU

Copyright 2019 GAPHOTON INC. all rights reserved.