Smart Systems for Industry 4.0

Prof. Dr. Thomas Otto

Director Fraunhofer ENAS Director Center for Microtechnologies at University of Technology Chemnitz

Outline

- 1. Working fields Fraunhofer ENAS
- 2. Industry 4.0 general trends
- 3. Hybrid sensors and sensor systems for Industry 4.0
- 4. Lighthouse project Go Beyond 4.0
- 5. Spectroscopy application in agriculture monitoring
- 6. Summary

© Fraunhofer ENAS

Locations Fraunhofer ENAS

Main Working Field - Smart Systems Integration

- Self-sufficient intelligent technical systems or subsystems with advanced functionality
- Bring together sensing, actuation and data processing, informatics / communications
- Autonomous systems
- Highly reliable, often miniaturised, networked, predictive
- Their operation being further enhanced by their ability to mutually address, identify and work in consort with each other
- → Basic components for Internet of Things

Core competences

- Based on the core competences research and development services starting from idea, via design and technology development, realization based on established technologies, up to prototype or demonstrator (transfer to industry)
- High-performance/ high-precision sensors and actuators
- Microfluidic systems and biosensor integration
- Printed functionalities

© Fraunhofer ENAS

Sensors and actuator systems with control units, integrated electronics, embedded software and user interface for application in different branches

Business Units

- Three application oriented business units
 - Technologies and systems for
 Smart Power and Mobility
 - Technologies and Systems for
 Smart Health
 - Technologies and Systems for
 Smart Production
- Two business units related to technologies
 - Micro and Nanoelectronics
 - Sensor and Actuator Systems

Technology-oriented business units

Micro and Nanoelectronics

- Back-End of Line and Interconnects
- Modeling and Simulation
- Beyond CMOS and RF Devices
- Integration and Packaging
- Characterization and Reliability

Sensor and Actuator Systems

- Inertial Sensors
- Pressure and Power Transducer
- Material and Structure Sensors
- Optical Systems/MOEMS
- Electromagnetic Sensors

100 µm

400 µr

Application-oriented business units

Technologies and systems for Smart Power and Mobility

- Network Monitoring
- Reduction of Power Consumption
- Power Supply
- Electromobility

Technologies and Systems for Smart Health

- Microfluidic and Spectroscopic Analysis
- Medical Devices
- Implants

Technologies and Systems for Smart Production

- Smart Digital Production
- Sensor Systems for Process and
 - **Condition Monitoring**

Outline

- 1. Working fields Fraunhofer ENAS
- 2. Industry 4.0 General trends
- 3. Hybrid sensors and sensor systems for Industry 4.0
- 4. Lighthouse project Go Beyond 4.0
- 5. Spectroscopy application in agriculture monitoring
- 6. Summary

© Fraunhofer ENAS

Smart Systems – Application Fields

Roadmap Topic: Manufacturing/Factory Automatition

R&D Demonstration Industrialization

	COGNITIVE,	Concepts for self-control and self-repair		
-A	SYSTEMS	Sensors for robot-human co-oj	peration	
-67	& AUTARKIC MACHINERY	Robot-human co-operation		
	ENERGY EFFICIENCY	Energy logger, intelligent pow Adaptive control Energy footprint reception du	ring production	
+/-)				
3	ADVANCED PRODUCTION FACILITIES	Additive manufacturing and in Lot size 1 CPS Lot size 100 CPS	tegrated intelligence	
r ·	INDUSTRY 4.0	Architecture concepts, tool boxes and sensor fusion concepts		
		Machine-based autarkic sensor nodes		
IJ-J		Predictive maintenance for ma	ass products ed by smart systems	
\sim		Secure and robust machine control		
\odot		Product-based autarkic sensor nodes		
		Life cycle recorder		
10		Milestone 2020	Milestone 2025	Milestone 2030
	FOCUS AREAS	Hard and software tool box for autarkic wireless sensor nodes	Secure and robust CPS and robot-human co-operation	Predictive maintenance for mass products

Technologies and Systems for

Smart Production

Sensor systems supporting production

Process control in mechanical engineering

- Process monitoring
- Process optimization
- Condition monitoring

Automation and Digitization of Production (Industry 4.0)

Smart digital production

- Transition to flexible production
- Series production of lot size 1
- Digital production

Supporting topics

Specific ressources

- Reliability of components and systems
- Wireless data and power transmission

Outline

- 1. Working fields Fraunhofer ENAS
- 2. Industry 4.0 general trends
- 3. Hybrid sensors and senor systems for Industry 4.0
- 4. Lighthouse project Go Beyond 4.0
- 5. Spectroscopy application in agriculture monitoring
- 6. Summary

© Fraunhofer ENAS

Nanocomposite Humidity Sensors

General:

- Printable humidity sensors based on polymeric microand nanocomposites
- Very high sensitivity up to 35 pF / % r.h.
- Response times in the range of 15 20 sec (comparable to commercial sensors)

Benefits:

- ow cost high serve asy production (e.g. printing), area substrates Easy scale-up / arrangement of multi sensor arrays for detection of moisture distributions for apability

Applications:

- Air humidity determination in buildings, warehouses, ...
- Detection of leakage of containers or packages
- Detection of cracks and water penetration into lightweight structures

Technology Readiness Level: 4

Backstitched screen printed humidity sensors

MEMS fluid sensor

General:

- Sensor for fluid quality measurement
- Viscosity range 5 cP... 100 cP
- Density range: 0.65 ... 1.50 kg/l
- Dielectric constant range: 1.0 ... 6.0
- Temperature range: -40°C...150°C

Working principle:

- Silicon resonator interacts with the fluid
- Evaluation of resonant frequency and damping to determine the fluid properties

CHEMNITZ

Applications:

- Oil quality measurement
- Chemical industry
- Food industry
- Test of fuel

Technology Readiness Level: 6

iSeal

General:

- Integration of autarkic sensors into a shaft seal to monitor both sealing function, temperature, rotational speed.
- Intelligent shaft seal is made up of subassemblies for sensing, signal processing, radio transmission, and an energy converter for autarkic operation

Benefits:

- ensures a trouble-free working of the machine,
- avoids cost-intensive down time or failures

Applications:

- Online monitoring of shaft seals inside gearbox
- Online monitoring lubricants inside gear box

Technology Readiness Level: 6

iSeal inside gear box

Structure-integrated, wireless sensor / actuator technology in machine construction

General:

- Sensor ring with integrated force and temperature measurement:
 - Forces up to 11 kN
 - Resolution < 5 N</p>
 - Data Rate 10 SPS
- Vibration sensor:
 - Frequency range: 10 Hz to 20 kHz
 - Analog and digital signal output
 - MEMS sensor and ASIC in one housing

Benefits:

 Process-controlled status monitoring in mechanical engineering by structure-integrated wireless sensor technology

Partners:

ENAS, IWU, IIS/EAS, IPMS, IZM/ASSID, IKTS

Technology Readiness Level: 4

Sensor ring with integrated force and

temperature measurement

Vibration sensor

Outline

- 1. Working fields Fraunhofer ENAS
- 2. Industry 4.0 general trends
- 3. Hybrid sensors and sensor systems for Industry 4.0
- 4. Lighthouse project Go Beyond 4.0
- 5. Spectroscopy application in agriculture monitoring
- 6. Summary

© Fraunhofer ENAS

FRAUNHOFER LIGHTHOUSE PROJECT 2016

DIGITAL MANUFACTURING IN MASS PRODUCTION

INNOVATION OF SERIES PRODUCTION BY DIGITAL PRINTING AND LASER PROCESSES

Fraunhofer Institute

for Electronic Nano Systems **ENAS**, Chemnitz, *consortium leader*

for Manufacturing Technology and Advanced Materials IFAM, Bremen

for Laser Technology ILT, Aachen

for Applied Optics and Precision Engineering IOF, Jena

for Silicate Research ISC, Würzburg

for Machine Tools and Forming Technology IWU, Chemnitz and Dresden

Digitalization of production for the individualization of mass-produced components

Market trends:

- Increasing product diversity with decreasing batch sizes
- Efficient use of high-quality functional materials
- Intelligent products with integrated data collection, processing and communication
- Further individualization of the product geometry beyond the software-based customization

urgent **need for research** of **future-proof production strategies**

Digital fabrication in mass production

... with the aim of networked and highly efficient production with minimal resource use through digital manufacturing and integration of innovative functional materials

... the successfull massproduction concept of printed flexible hybrid electronics:

Roll-to-Roll printing

Orientation of the markets:

Individualization of every massproduced components → Printing by robot on product

Crosslinked digital functionalization and individualization technologies within existing production lines

Applications

DIGITAL MANUFACTURING IN MASS PRODUCTION INNOVATION OF SERIES PRODUCTION BY DIGITAL PRINTING AND LASER PROCESSES

"Smart Door"

CHEMNIT7

- **Trend:** Individualization & functional enhancement in automotive (40.000 individualized vehicles per day at VW)
- Challenge: Variety of variants with decreasing batch sizes
- Aim: Differentiation and increased efficiency of the production by means of printing and laser technologies <u>demonstrated on printed</u> <u>conductive paths / cable trees, sensors and</u> <u>control elements</u> of a car door

Aikrotechnologier

Technology

Digital modules based on digital printing and laser processes

Additive material deposition

Laser sintering & laser ablation

Robotic printing system Fraunhofer ENAS, Chemnitz/Germany

TECHNISCHE UNIVERSITÄT

CHEMNITZ

Robotic laser system Fraunhofer ILT, Aachen/Germany

Printed automotive wiring harness
 on sheet metal

 Metal forming

- 1. Metal forming
- 2. Printed automotive wiring harness on 3D metal object

Concept A) Printing → Metal forming (deep drawing)

Stretchability: up to 20 %

Bendability: up to 105°

deep drawing

Concept A) Printing → Metal forming (deep drawing)

Concept A)

Outline

- 1. Working fields Fraunhofer ENAS
- 2. Industry 4.0
- 3. Hybrid sensors and sensor systems for Industry 4.0
- 4. Lighthouse project Go Beyond 4.0
- 5. Spectroscopy application in agriculture monitoring
- 6. Summary

Roadmap Topic: Natural Resources

R&D Demonstration Industrialization

Analysis by spectroscopy: Detect the composition of substances!

Motivation – infrared spectroscopy for daily use

Large, >10kg, xx k€

Source: http://www.digitaltrends.com/cooltech/changhong-smartphone-spectrometerces-2017/

Source http://labinyourpocket.com/near-infrared-analysis-by-portable-mini-spectrometers-and-mobile-phones/

Fabry-Pérot interferometer (infrared spectral range)

General:

- Electrically tunable MOEMS band-pass filter for infrared spectral range (3-5 µm, 5-8 µm, 8-11 µm)
- Transmittance > 70%
- Bandwidth (FWHM): 25-200 nm
- Control voltage: 15-60 V
- Aperture size: 2x2 mm²

Benefits:

- Small band-pass filter
- Fits in a TO-8 housing (7 x 7 x 0,6 mm³)
- Low influence of vibration and gravitati central wavelength

Applications:

- Infrared measurement instrumentation
- Spectral gas analysis
- Spectral imaging

Technology Readiness Level: 6

Two symmetric parts with Bragg reflectors and ARC

Mikrotechnologien

Fabry-Pérot Interferometer chip

Detector with integrated FPI

New developments and directions: Emitter based on quantum dots

- Charge carriers with limited mobility and discrete states
- Optical properties depend on material and size of the particles
- Wavelength of emission and of absorption can be tuned
- High quantum efficiency (EQE: ~ 2 %)
- QDs in suspension to apply by printing, spin coating ...

Kolloidale Quantum Dots

Source: http://www.sigmaaldrich.com/materials-science/ nanomaterials/quantum-dots.html

Photoimage of QD-LEDin operation

Applications

- Warning and safety systems
- Gas analyzers in for medical and power applications
- Raman spectroscopy and ATR sensors for chemical industry and bio-analysis
- Application in handheld devices and unmanned vehicles
- Spectral imaging

Spectral data based detection of plant disease

- Spectral data collection and derivation of hyperspectral signatures
- Data processing (PCA, neuronal network)

Applications:

- Optimization of crop crow conditions:
 - Photo synthesis,
 - Transpiration,
 - Stomatal conductance
 - Internal CO₂- concentration
- Detection of plant diseases
- Optimum application of fertilizers and plant protection chemicals

Reflection spectra of wheat with and without Puccinia striiformis

© Fraunhofer ENAS

eGrains system for precision farming and pest control

General:

- Diagnose system for stress and damage of crop
- Detection of pests in crop culture
- Miniaturized Sensor nodes
- Technology approaches for biodegradability

Benefits:

- Autonomous work, no manual inspections
- Continues supervision of temperature and wetness of leafs

Applications:

- Crop cultures
- Vegetable cultivation

Technology Readiness Level: 2

CHEMNIT7

Outline

- 1. Working fields Fraunhofer ENAS
- 2. Industry 4.0
- 3. Hybrid sensors and sensor systems for Industry 4.0
- 4. Lighthouse project Go Beyond 4.0
- 5. Spectroscopy application in agriculture monitoring
- 6. Summary

International Conference & Exhibition on integration issues of miniaturized systems – MEMS, MOEMS, ICs and electronic components smartsystems

integration

14. Conference: 01-02 April 2020, Grenoble, France

Part of the Activities of:

Chair:	Prof. Dr. T. Otto, Fraunhofer ENAS
Co-Chair:	Dr. Stefan Finkbeiner, Bosch Sensortec and EPoSS
	Wolfgang Gessner, EPoSS

Contact us

Fraunhofer ENAS Prof. Dr. Thomas Otto Technologie-Campus 3 09126 Chemnitz Germany

Phone: +49 (0)371 45001-100 Fax: +49 (0)371 45001-101 Email: info@enas.fraunhofer.de Web: http://www.enas.fraunhofer.de/EN

TECHNISCHE UNIVERSITÄT

CHEMNITZ

